RS(28, 24) with Erasures Decoder

Features

- Industry standard (28, 24) Reed-Solomon decoder, corrects up to 2 errors or up to 4 erasures
- Available for FPGA or ASIC implementation
- High speed design, reaches 1.6 Gbps data rate in Virtex IV, higher in ASIC
- Compact design, uses 933 CLB slices and 1 block ram in Virtex IV, among the smallest on the market
- Can work continuously with no gap between code blocks
- Fully synchronous one clock design
- 28 + 28 clock cycle latency

Functional Description

The decoder has three functional blocks and one memory block as shown in Figure 1.

Figure 1. Block diagram of the Reed-Solomon decoder.

First the syndrome unit calculates the syndromes. Then the key equation solver solves the key equation for the error location polynomial. The correction unit calculates the error location and value and then adds the error sequence to the received code word to get the corrected code word. The memory unit is used to store the received

code word while the decoder calculates the syndromes and solves the key equation. During the correction stage, the stored code word is read out from the memory and added to the error sequence to get the corrected code word.

Pin Out

Figure 2 is the schematic symbol of the Reed-Solomon decoder.

RST

Figure 2. Schematic symbol of the decoder

One bit input, the asynchronous reset. When RST is set high, all the internal flip-flops are asynchronously initialized. The core will stay in this state until RST is set low.

CLK

One bit input, the global clock. All sequential logic acts on the rising edge of CLK.

START

One bit input, the signal to start the decoding process. At the rising edge of CLK, if START is high while RST is low, the internal state machine will start the decoding process. For continuous operation, the START signal for the nest code block must line up with the last byte of the previous code block. Otherwise, the START signal for the next code block must be at least five clocks after the last byte of the previous code block. The length of START should be one clock cycle.

ERASE

One bit input, the signal to indicate that the incoming data symbol is an erasure.

DATA_IN

Eight bit input, the received code word. The first byte of the code word should be one clock after the START pulse. The decoder reads in one byte every clock. Each code word must have 255 bytes with 239 data bytes and 16 parity check bytes. If there is a second code word following the first one, the second code word must follow the first one either with no gap or with a six-clock cycle gap.

CODE_OUT

Eight bit output, the decoded code word. If there are eight or less than eight erroneous bytes, the output is the corrected code word. Otherwise, the output is unpredictable.

CODE_CE

One bit output, the clock enable for outputting the corrected code word. The length of CODE_CE is 255 clock cycles.

Timing Diagrams

The Reed-Solomon decoder is very easy to be integrated into a larger design. The following timing diagrams help to clarify some of the synchronization issues.

Figure 3 shows the timing diagram at the starting point of the decoding process, where D0 is the first byte of the received

Figure 3. The timing diagram at the starting point of the decoding process

code word.

Figure 4 shows the timing diagram at the starting point of the output, where C0 is the first byte of the decoded code word.

Figure 5 shows the timing diagram of the continuous operation mode, where DA254 is the last byte of the first received code word

and DB0 is the first byte of the following

Figure 4. The timing diagram at the starting point of the output

Figure 5. The timing diagram of the continuous operation mode

code word.

Deliverables

Deliverables include the encoder/decoder and the test bench. For Xilinx FPGA implementation, both source code and netlist are available. For ASIC implementation, only source code will be delivered. Source code can be in VHDL or Verilog.

Ordering Information

We have flexible licensing structures. Please use the following information to contact us:

Highland Communications Technologies 928 Concession Road, Fort Erie Ontario, Canada L2A 6B8

Tel: 1-905-658-0989 Fax: 1-905-248-5188 Email: <u>sales@highlandcomm.com</u>

Web site: http://www.highlandcomm.com/